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Abstract

Gene duplication is an important evolutionary mechanism capable of providing new genetic material, which in some instances can help organisms
adapt to various environmental conditions. Recent studies, for example, have indicated that highly similar duplicate genes (HSDs) are aiding
adaptation to extreme conditions via gene dosage. However, for most eukaryotic genomes HSDs remain uncharacterized, partly because they
can be hard to identify and categorize efficiently and effectively. Here, we collected and curated HSDs in nuclear genomes from various model
animals, land plants and algae and indexed them in an online, open-access sequence repository called HSDatabase. Currently, this database
contains 117 864 curated HSDs from 40 distinct genomes; it includes statistics on the total number of HSDs per genome as well as individual HSD
copy numbers/lengths and provides sequence alignments of the duplicate gene copies. HSDatabase also allows users to download sequences
of gene copies, access genome browsers, and link out to other databases, such as Pfam and Kyoto Encyclopedia of Genes and Genomes. What
is more, a built-in Basic Local Alignment Search Tool option is available to conveniently explore potential homologous sequences of interest
within and across species. HSDatabase has a userfriendly interface and provides easy access to the source data. It can be used on its own for
comparative analyses of gene duplicates or in conjunction with HSDFinder, a newly developed bioinformatics tool for identifying, annotating,
categorizing and visualizing HSDs.

Database URL: http://hsdfinder.com/database/

Introduction priscuii (7). It is believed that these HSDs are aiding its sur-
vival via gene dosage (8). Unfortunately, the HSDs from
most other eukaryotic genomes, particularly those of algae,
remain uncharacterized. This is partly because the experi-
mental methods for identifying HSDs are time-consuming
and labor-intensive. Many of the available bioinformatics
tools for characterizing homologs are limited by their designs
(e.g. they only identify orthologs) or their specificity (e.g.
they only identify retrocopies or co-localized duplicates)
(9-13). Consequently, we recently developed a web-based
tool called HSDFinder that can identify HSDs in eukaryotic
genomes with high accuracy and reliability (14). For example,
HSDFinder predicted 336 and 265 HSDs in the psychrophilic
green algae UWO241 and Chlamydomonas sp. ICE-L (6),

Gene duplication is a near-ubiquitous phenomenon through-
out the eukaryotic tree of life (1), one that can be advanta-
geous or disadvantageous, depending on the circumstances.
For example, under certain conditions, it can be detrimental
for an organism to retain highly similar expressed genes (2).
Thus, with notable exceptions, it is relatively rare for species
to maintain duplicate genes encoding the same functions (3).
Nevertheless, it is becoming more apparent that in some
situations the generation and maintenance of highly simi-
lar duplicate genes (HSDs) is possible, particularly for genes
encoding products that are in high demand, such as histones
or ribosomal proteins (4). Indeed, there are many examples

suggesting that genes involved in stress response, sensory func-
tions, transport and/or metabolism are likely to be fixed as
duplicated copies given specific environmental conditions (5).

Recently, Zhang et al. (6) revealed that hundreds of
HSDs, involved in diverse cellular processes, are maintained
in the psychrophilic Antarctic green alga Chlamydomonas
sp. UWO241, which was recently renamed Chlamydomonas

respectively, which is consistent with other experimental data
(8). By applying HSDFinder to a variety of other species
(15), we predicted and cataloged thousands of HSD candi-
dates, which are now curated and documented in a new online
repository called HSDatabase. Currently, it houses 117 864
HSDs from 40 eukaryotic species, with a focus on green algae,
animals and land plants.
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Here, we briefly introduce the general features as well
as the procedures and principles for collecting data from
HSDatabase. In short, HSDatabase contains information on
HSD number, gene copy number and gene copy length.
Additionally, the protein functional domains and associated
pathways of the HSDs can be retrieved from the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) and InterProScan
(16). A built-in Basic Local Alignment Search Tool (BLAST)-
search option is also provided, allowing users to conve-
niently explore potential homologous sequences of interest
within and across species. HSDatabase also provides data
on a range of other parameters about gene duplicates, such
as the number of HSD per Mb, the most commonly con-
served domains among HSDs and the functional categories of
HSDs. It is our hope to build a comparative analysis frame-
work across species, especially for best-assembled eukaryotic
genomes from species living in extreme environments, to
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better understand the role of gene duplication in adaptive
evolution.

Materials and methods
Database collection

HSDs were identified in 40 well-assembled nuclear genomes
from diverse model species, including land plants (e.g. Ara-
bidopsis thaliana and Zea mays), algae (e.g. Chlamydomonas
reinbardtii and Fragilariopsis cylindrus) and animals (e.g.
Drosophila melanogaster, Homo sapiens and Mus muscu-
lus) (Figure 1). We focused on model animal and plant
genomes because of their high-quality assemblies and anno-
tations. The genome sequences of the selected species are
all retrievable from the National Center for Biotechnology
Information (NCBI) (17) (Table 1). The HSDs, which are
represented by gene copies with nearly identical lengths and
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Figure 1. Taxonomic tree of 40 eukaryotic species in four highlighted categories. Stramenopila, Plantae, Fungi and Animalia are in blue, orange, green
and red, respectively. The tree topologies were inferred by Taxonomy Common Tree from NCBI (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/

wwwcemt.cgi).
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similar gene structures, were identified using HSDFinder
(14). The identification method is based on all-against-all
BLASTP analyses (18) carried out using uniform homology
assessment metrics: E-value cut-off <le-10, amino acid pair-
wise identity >90% and amino acid aligned length variance
<10. Note, the short form of these parameters is denoted
as ‘90%_10aa’. Additionally, putative HSDs were expected
to have similar structural information, such as matching
protein family (Pfam) domains (19), corresponding InterPro
annotations (16) and/or nearly identical conserved residues.
The InterProScan tool (16), which is an integrated platform
for protein signatures, was used to collect the structural
information of the HSDs. The all-against-all BLAST and Inter-
ProScan results (tab-delimited files) were fed into HSDFinder
to generate HSD candidates in an 8-column tab-delimited
file (Figure 2A). These candidates were identified by pars-
ing the BLAST all-against-all protein similarity search results
with the homology metrics: amino acid pairwise identity and
amino acid aligned length variance. To collect and curate the
data in HSDatabase, we performed a series of combo thresh-
olds for filtering putatively functional gene copies (described
below at Database curation section).

Database curation

Prior to uploading data into HSDatabase, we curated HSD
candidates by filtering for redundancy and adding the newly
curated HSDs (Figure 2B). For genes that have alternative pro-
tein products, we selected the longest gene isoform to reduce
redundancy. Since highly similar gene copies are grouped

A HSDFinder

B Manually curation c

together as HSDs based on a simple transitive link between
the remaining genes (14), it is possible for some highly dupli-
cated genes to form mega HSD groups with varied gene
copy lengths, especially those encoding histones, ribosomal
proteins or retro-transcriptases. Moreover, some gene copies
might appear multiple times causing redundancy among dif-
ferent HSD groups, which is because the BLAST algorithm
limits the maximum target hits by default. In these cases,
we manually curated the HSD groups, minimizing redundant
gene copies.

Since the similarity of duplicate genes within and among
genomes can vary significantly, we added newly curated HSDs
to the database using a combination of thresholds to acquire
a larger dataset of HSD candidates. We added the HSD
candidates one after another at different homology assess-
ment metrics (i.e. HSDs identified at more relaxed thresh-
olds were treated more strictly than those found using more
conservative thresholds) (Figure 2B). For example, HSDs
identified at a threshold of 90%_30aa were added on to
those identified at a threshold of 90%_10aa (denoted as
90%_30aa+90%_10aa’); any redundant HSDs candidates
picked out at this combo threshold were removed if the
more relaxed threshold (i.e. 90%_30aa) had the identical
genes or contained the same gene copies from the stricter
cut-off (i.e. 90%_10aa). Moreover, any HSD candidates pin-
pointed at the combo threshold (90%_30aa + 90%_10aa)
were removed if the minimum gene copy length was less
than half of the maximum gene copy length for each HSD
or if HSD candidates had gene copies with incomplete con-
served domains (i.e. a different number of Pfam domains).

HSDatabase

A

\ H Helpful not
Input files preparation s

3 r HSDs details

Output files generation

InterProScan BLAST I I N

The combination thresholds are to ensure
the gene-pairs in question are functional
duplicates rather than spurious ones.

The putatively diverged HSD groups are
labelled as “candidate HSDs” and should be
proceeded with caution.

A = 90%_100aa+(90%_70aa+
(90%_50aa+(90%_30aa+90%_10aa)))
B = 80%_100aa+(80%_70aa+
(80%_50aa+(80%_30aa+80%_10aa)))
C = 70%_100aa+(70%_70aa+
(70%_50aa+(70%_30aa+70%_10aa)))

Filtering

Adding

HSDs gene copy number

HSDs percentage identity
HSDs Pfam domain

HSDs KEGG accession number

Browse

BLAST

/ HSDFinder
N

N

r Search

>/

Figure 2. The workflow of HSDatabase. (A) Steps for using HSDFinder to collect candidate HSDs. (B) Manual curation of HSDs via filtering and adding
new HSD candidates prior to being deposited into HSDatabase. (C) Steps of accessing HSD data in HSDatabase, including browsing via organism name,
blasting query sequences against the database and searching through the HSD and gene copy IDs.
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After filtering the combo threshold at (90%_30aa -+
90%_10aa), we added on a more relaxed threshold
90%_50aa (i.e. 90%_50aa + (90%_30aa+ 90%_10aa))
and then carried out the same HSD candidate removal/fil-
tering process. To minimize redundancy and to acquire
a larger dataset of HSD candidates, we processed each
selected species with the following combination of thresholds:

E+(D+(C+(B+A))).

A = 90%_100aa + (90%_70aa + (90%_50aa
+90%_30aa+ 90%_10aa)))

B = 80%_100aa + (80%_70aa + (80%_50aa
+ (80%_30aa + 80%_10aa)))

C="70%_100aa + (70%_70aa + (70%_50aa
+(70%_30aa + 70%_10aa)))

D = 60%_100aa + (60%_70aa + (60%_50aa
+ (60%_30aa + 60%_10aa)))

E = 50%_100aa + (50%_70aa + (50%_50aa
+ (50%_30aa + 50%_10aa)))

Database implementation

The database was built with the Django 3.0.5 web frame-
work  (https://www.djangoproject.com/), and all data were
stored in an SQLite 3.36.0 database (https://www.sqlite.
org/index.html) on an Amazon web server. Webpage tem-
plates used Bootstrap framework (https://getbootstrap.com/),
D3.js (https://d3js.org), jQuery (http://jquery.com) and Boot-
strap Table (https://bootstrap-table.com/) libraries to establish
a user-friendly, front-end interface. On the browse page,
NCBI’s Sequence Viewer 3.44.0 (https://www.ncbi.nlm.nih.
gov/projects/sviewer/) was employed to build a fast and scal-
able genome browser.

Results and discussion
Database content and analysis

HSDatabase was built using a relational database (MySQL)
allowing the rapid retrieval of data and making resources
easily maintainable. One entry corresponds to one eukaryote
genome. The genomes can be accessed via the organism table
or the taxonomic tree. The genome entry is then split into vari-
ous subcategories of HSD entries. Database access is via a web
interface based on python script and provides various ways to
search for HSD entries, including species name, unique HSD
IDs and gene copy IDs.

Using HSDFinder (15), we collected and curated 117 864
HSDs (representing 379 844 gene copies) from 40 well-
assembled nuclear genomes of diverse model species (Table 1).
Various green algae were included because of our specific
interest in algal genomics and also because of their relatively
modest genome sizes and penchant for gene duplications.

Database, Vol. 00, Article ID baac086

For example, the acidophilic green alga Chlamydomonas
eustigma is known to have large numbers of gene dupli-
cates in its nuclear genome, including 10 gene copies for
arsenate reductase and 20 for glutaredoxin (20). Similarly,
the psychrophilic green alga Chlamydomonas sp. ICE-L con-
tains multiple copies of genes encoding carotene biosynthesis-
related protein and Lhc-like protein (Lhl4) (21). These data
are consistent with our identification of large numbers of
HSDs in C. eustigma (276) and ICE-L (265) (Table 1), sug-
gesting a potential adaptative role of gene duplication under
different extreme environmental conditions.

Compared to algae, the investigated land plants had higher
detected numbers of HSDs as well as larger ratios of HSDs/Mb
and HSDs/genes (Table 1). For example, the HSDs/Mb val-
ues for Arabidopsis lyrata and A. thaliana are 26 and 37,
respectively, whereas the average HSDs/Mb value among
selected green algae is 8.2. Compared to algae and land
plants, the HSDs/Mb values in animals are generally quite
low with the exception of Hypsibius dujardini (13.6) and
D. melanogaster (5.6). Two-group HSDs (i.e. HSDs contain-
ing two gene copies) represent the majority (>50%) of total
HSDs for all explored species.

As for the associated functions of the detected HSDs, three
green algal species with relatively large values of HSDs/genes
were compared previously. These algae can survive various
extreme environmental conditions and include the Antarc-
tic psychrophilic green algae UWO241 (0.068) and ICE-L
(0.078) and the acidophilic C. eustigma (0.068) (Table 1).
The identified duplicates are involved in a diversity of cellular
pathways, including gene expression, cell growth, membrane
transport and energy metabolism, but also include riboso-
mal proteins (6, 14). Although HSDs for protein translation,
DNA packaging and photosynthesis are particularly preva-
lent, around 30% of the HSDs are hypothetical proteins
without any Pfam domains.

Database composition and usage

Information about specific HSDs and their associated gene
copies for a given species can be obtained through the ‘Browse’
and ‘Search’ tabs, which are located on the menu bar at the
top of the page, or using nucleotide/amino acid sequences as
queries to search against the database via BLAST (i.e. BLASTP
or BLASTX). To categorize duplicated genes into their func-
tional categories, KEGG pathway schematics are available for
each species.

Browse

By selecting the ‘Browse’ option from the main menu, users
are offered three ways to explore their species of interest.
First, they can simply click the organism name on the tax-
onomic tree containing the 40 species. Secondly, users can
select the ‘Plantae and Stramenopila’ or ‘Animalia and Fungi’
tabs (Figure 3A), which contain 23 and 17 species, respec-
tively. Selecting a tab takes users to a summary table that
contains the organism names, number of HSDs, species back-
ground information, GenBank accession links to genome
assemblies, and reference links to PubMed.

Selecting a specific species from the browse page leads to
the respective HSDs summary page (Figure 4A), which gives
data on the total number of HSDs, unique HSD IDs, gene
copy GenBank IDs and number of gene copies; it also pro-
vides access to the data download function. Choosing one of
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Figure 3. Screenshots of the HSDatabase interface. There are four main functions in the menu page: (A) Browse the database via species entries; (B)
search the database via the HSDatabase unique ID (e.g. hsd_id_Athaliana_1) or gene ID (e.g. NP_200993.1); (C) use BLAST to search the database via
amino acid sequence in FASTA format; and (D) categorize the gene copies and HSDs under the KEGG pathway functional categories.

the HSD ID entries, for example, brings up a page contain-
ing information and features of a detected HSD, including the
associated gene copies for a unique HSD as well as the Gen-
Bank link, the sequence length, the Pfam domain ID/descrip-
tion and the InterPro database ID/description (Figure 4B).
Clicking on the ‘genome browser’ tab allows for the visualiza-
tion of a specific gene copy through the built-in NCBI genome
browser (Figure 4C). The ‘FASTA sequence’ tab provides the
option to download the sequence data (Figure 4D) and the
‘alignments and identity %’ tab brings up the gene copy align-
ment and percentage identity matrix created by the built-in
Clustal v2.1 tool (22) (Figure 4E).

Search

Through the search option from the main menu users
can search unique HSD IDs or gene copy IDs against the
database (Figure 3B); they can also set the selection categories
to limit the search results, which can improve search efficiency.
After activation of the search button, 30 results per page are
displayed (Figure 3B) in a four-column table, including HSD
name, gene copy name, number of gene copies and the exter-
nal download link to the output data (tab-delimited file). Users
can navigate through the results page or download specific
HSD entries. As described in the Browse section, the data file
includes various summary statistics on the HSDs (Figure 4B).

BLAST

The BLAST tool bar allows users to input a nucleotide or
amino acid sequence (in FASTA format) and carry out a

sequence similarity search using BLASTX or BLASTP. Users
can specify the species against which the BLAST search will
be performed. The E-value and maximum target sequence of
results can also be adjusted, but all other parameters remain
as default and cannot be changed (Figure 3C). The BLAST
search output result is in the standard 13-column tabular for-
mat, including the linkable query sequence ID and HSD ID,
percentage identity, aligned length and all other BLAST tabu-
lar output values. The most similar sequences are arranged at
the top.

KEGG

The KEGG page contains details on the associated KEGG
pathways of the HSD gene copies for the 40 species. To browse
the data for a particular species, users can simply select the
organism’s name. The 6-column table lists the gene copies
and HSDs under KEGG functional categories (Figure 3D).
Gene copies involved in the same KEGG pathway are detailed
with the first KEGG category (e.g. Carbohydrate metabolism),
then the secondary category (e.g. Glycolysis/Gluconeogene-
sis) and finally the KEGG pathway function description (e.g.
ENO, eno; enolase). The KEGG ID (e.g. K01689) is linked
to the external KEGG database, providing more detailed
information.

Future direction and limitation

Now that HSDatabase is publicly available, the next step is
to analyze duplicate genes across a broader range of species,
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Figure 4. Summary of database information for a selected species. (A) HSDs collected in a table for a specific species. (B) Basic information of the
unique HSD ID, gene copy ID and the associated links to Pfam domains and InterPro databases. (C) Linking gene copies to the genome browser. (D) The
FASTA sequence downloads of gene copies. (E) Alignments and percentage sequence identities of gene copies.

which we plan on doing in the near future. Currently, the
database includes a range of statistics (e.g. number of HSD
per Mb), but we hope to add additional data in the coming
years, including information on differential expression levels
among duplicates, for instance, as well as data on rates of
synonymous and nonsynonymous substitutions (dN/dS rates).
The biggest challenge moving forward will be determining
an appropriate threshold for accurately predicting HSDs. As
research on gene duplicates improves, we may need to adjust
the metrics (e.g. amino acid pairwise identity and amino acid
aligned length variance) to find as many bona fide HSDs as
possible.

Presently, there is no standard golden cut-off for identify-
ing HSDs and there might never be one as there a multitude
of forces, including lineage/genomic specific ones, that can
impact the accuracy of the identification metrics. This is why
users can employ different parameters in the HSDFinder tool
(from 30 to 100% amino acid pairwise identity and from
within 0 to 100 amino acid aligned length variance). In our
case, we used a series of combination thresholds to curate
the HSDs in HSDatabase. But due to the limitations of this
strategy, there are some large groups of HSD candidates
in the database that likely diverged in function from one
another and, thus, are not inducing a gene dosage benefit.

In the database, we have labeled these putatively diverged
HSD groups as ‘candidate HSDs’ and have added a warning
note that users should proceed with caution when work-
ing with these datasets. In the future, our goal is to guide
users to species-specific thresholds and deposit more diverse
eukaryotic species into the database.

Conclusions

With the decreasing cost of next-generation sequencing, biol-
ogists are dealing with ever larger amounts of data. How-
ever, many bioinformatics software suites require considerable
knowledge of computer scripting and microprogramming.
To facilitate the understanding and analysis of gene duplica-
tion in nuclear genomes, we developed HSDatabase, which
currently contains 117864 HSDs from 40 well-assembled
eukaryotic genomes. In conjunction with HSDatabase, we
designed HSDFinder, which can efficiently identify duplicated
genes from unannotated genome sequences by integrating the
results from InterProScan and KEGG. HSDatabase aims to
become a useful platform for the identification and compre-
hensive analysis of HSDs in eukaryotic genomes, which could
aid research into the mechanisms driving genome adaptation.
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In the future, the database will be updated by incorporating
advancements in the field of gene duplication.

Supplementary data

Supplementary data are available at Database Online.
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