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The enigmatic loss of
light-independent chlorophyll
biosynthesis from an Antarctic
green alga in a light-limited
environment

Introduction

Chlorophyll production is a complicated, multifaceted process.
Indeed, the cyanobacterial progenitor of chloroplasts bestowed
eukaryotic plants and algae with two distinct nonhomologous
enzymes for reducing protochlorophyllide to chlorophyllide (the
penultimate step of chlorophyll a (chla) biosynthesis): light-
dependent (LPOR) and light-independent protochlorophyllide
oxidoreductase (DPOR) (Armstrong, 1998; Fujita &Bauer, 2003;
Reinbothe et al., 2010). The former, which is encoded by the
nuclear gene por, is employed by all photosynthetic eukaryotes
explored to date (Hunsperger et al., 2015) and, as its name implies,
is only active when its pigment substrate (protochlorophyllide)
absorbs light (Griffiths et al., 1996; Shui et al., 2009). DPOR,
conversely, is encoded in the chloroplast genome by the genes chlL,
chlN, and chlB (Suzuki&Bauer, 1992; Li et al., 1993), has been lost
multiple times independently throughout eukaryotic evolution
(Fujita & Bauer, 2003; Ueda et al., 2014; Hunsperger et al., 2015;
Kim et al., 2017), and can facilitate chlorophyll synthesis in the
dark (Shui et al., 2009; Reinbothe et al., 2010).

The evolutionary origins of LPOR and DPOR are reflected in
how they function today. For instance, DPOR, which predates
LPOR, is believed to have evolved from a nitrogenase-like enzyme
in anoxygenic photosynthetic bacteria (Reinbothe et al., 1996;
Fujita & Bauer, 2003), and is why this enzyme is oxygen sensitive
(Yamazaki et al., 2006; Yamamoto et al., 2009; Stol�arik et al.,
2017). Conversely, LPOR first arose in cyanobacteria (Suzuki &
Bauer, 1995) whose oxygenic mode of photosynthesis probably
provided strong selective pressures for an enzyme that works well in
oxygen-rich conditions, which it does (Reinbothe et al., 1996;
Yamazaki et al., 2006; Shui et al., 2009). These two enzymes also
differ in their sensitivities to light. Again, LPOR’s ability to
function is contingent on the absorption of light energy by
protochlorophyllide (Griffiths et al., 1996), which has maximum
absorbances in both the blue and red regions of the visible light
spectrum (Koski& Smith, 1948). But research suggests that LPOR
is three to seven times more efficient when protochlorophyllide
absorbs red light (647 nm) relative to blue light (407 nm)

(Hanf et al., 2012), which penetrates deeper into thewater column.
Unlike LPOR, the efficiency of DPOR is not impaired by differing
wavelengths of visible light. DPOR, however, is dependent on iron
for constructing iron–sulfur clusters (Fujita&Bauer, 2000), which
is not true of the iron moiety-lacking LPOR.

The various differences between LPOR and DPOR can help
explain why both enzymes have beenmaintained in a wide range of
photosynthetic eukaryotes for hundreds of millions of years.
Nevertheless, DPOR has been lost on multiple occasions. For
example, angiosperms and some gymnosperms have surrendered
light-independent chlorophyll biosynthesis (Skribanek et al., 2008;
Solymosi&Schoefs, 2010;Ueda et al., 2014), as have various algae,
with examples from species with primary plastids as well as from
those with complex plastids, which are derived from one eukaryote
engulfing another (Hunsperger et al., 2015; Kim et al., 2017). The
reasons why some lineages have forfeited DPOR while others have
retained it are poorly understood. It has been hypothesized that for
algae inhabiting iron-depleted environments maintenance of
DPOR could be metabolically disadvantageous and, therefore,
such conditions might contribute to its loss (Behrenfeld et al.,
2006; Bowler et al., 2010; Hunsperger et al., 2015). But for algae
living in deep or turbid waters, with limited availability of red light,
or those spending extended periods in darkness, having DPOR
would seem to be an asset, and could partly account for its
widespread conservation across photosynthetic life (Fong &
Archibald, 2008; Ueda et al., 2014).

One lineage in which the maintenance of DPOR is particularly
prevalent is the chlorophycean class of green algae (Hunsperger
et al., 2015; Turmel & Lemieux, 2018). The ability to carry out
light-independent chlorophyll production is a reoccurring theme
throughout this monophyletic group of mostly freshwater flagel-
lates, including in the model species Chlamydomonas reinhardtii,
Volvox carteri, and Dunaliella salina (Turmel & Lemieux, 2018).
Therefore, it was surprising when a chlorophycean that has lost
DPOR was recently identified, a finding made all the more
interesting given the environment from which this alga comes.

A DPOR-less Chlamydomonas

In the McMurdo Dry Valleys of Antarctica sits the perennially ice-
covered Lake Bonney, which is home to a diversity ofmicrobial life,
despite the harsh conditions (Bielewicz et al., 2011; Kong et al.,
2014; Dolhi et al., 2015; Li et al., 2016), including the polyex-
tremophilic green alga Chlamydomonas sp. UWO241 (hereafter
UWO241) (Possmayer et al., 2016; Cvetkovska et al., 2017). Lake
Bonney is not for the faint-hearted photosynthesizer. Situated
c. 17 m below its surface, UWO241 is exposed to continuous cold
(c. 5°C year round), high salinity (0.7 M), reduced levels of
phosphorus, seasonal extremes in photoperiod (e.g. 24-h darkness
during the peak austral winter), and perpetual low irradiance
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(< 50 lmol photons m�2 s�1), which is biased in the blue-green
spectrum (450–550 nm) (Neale & Priscu, 1995). UWO241 is an
obligate cold extremophile (psychrophile) and is unable to grow
≥ 18°C. Accordingly, it has evolved an unconventional photosyn-
thetic apparatus, tailored to work best at c. 8°C, but its
photosynthetic activity is severely inhibited at moderate temper-
atures. It can also rapidly repair photosystem II reaction centres,
therefore avoiding photoinhibition at low temperatures (Morgan
et al., 1998; Pocock et al., 2007; Possmayer et al., 2011). Evenmore
unconventional is the inability of UWO241 to undergo photo-
synthetic state transitions (from state 1 to state 2), which balance
the energy distribution between photosystems I and II (Morgan-
Kiss et al., 2002). Instead, UWO241 achieves optimal rates of
photosynthesis by maintaining high cyclic electron flow via a novel
PSI supercomplex (Szyszka-Mroz et al., 2015). Remarkably, given
its light-restricted environment, our present work suggests that this
alga has also lost the ability to carry out the light-independent
synthesis of chla.

Our sequencing, assembly, and annotation of the entire
UWO241 chloroplast genome failed to identify the three genes
encoding DPOR (chlL, chlN and chlB) from an otherwise
standard and full set of chloroplast coding regions (GenBank
accession no. MH590838; Supporting Information Fig. S1;
Methods S1). Exhaustive searches of our draft nuclear genome
and transcriptome sequences for UWO241 also failed to locate
chlL, chlN or chlB (Table S1; Methods S1), indicating that these
genes have not migrated to the nuclear compartment, which
would have been unprecedented if it were the case. Even a search
of the mitochondrial DNA (mtDNA) (GenBank accession no.
MH598508; Fig. S2), which in some species can sometimes
acquire chloroplast genes, came up empty for the three DPOR-
encoding loci. We screened the nuclear genome for other genes
encoding enzymes involved in chlorophyll biosynthesis and
uncovered a conserved pathway between UWO241 and its close
relatives (Table S2).

In some algae that lack DPOR, including certain haptophytes
and stramenopiles, the por gene is duplicated, and it has been
hypothesized that this duplication might compensate for the loss
of DPOR, potentially by allowing for the differential regulation
of por genes (Hunsperger et al., 2015). We found no evidence in
the transcriptome or genome data that por is duplicated in
UWO241. The single por gene and its deduced amino acid
sequence are complete and similar to their counterparts in other
chlorophycean algae (Fig. S3) (e.g. 73.4% pairwise identity with
Chlamydomonas eustigma). We did, however, uncover two other
duplicated genes: GENOMES UNCOUPLED (GUN4), encod-
ing a regulatory subunit of Mg-chelatase that enhances chloro-
phyll biosynthesis and contributes to retrograde signalling
(Formighieri et al., 2012; Brzezowski et al., 2014), and chloro-
phyllide a oxygenase (CAO), which is responsible for the
production of chlb (Tanaka et al., 1998; Bujaldon et al., 2016).
To the best of our knowledge, this is the first report of
duplication of these genes in a green alga. From these data, it is
clear that UWO241 has a functional chlorophyll biosynthesis
pathway but has lost DPOR and is solely dependent on LPOR
for the enzymatic reduction of protochlorophyllide (Fig. S5).

On a side note, the UWO241 ptDNA, at 174 kb, is the second
smallest plastome identified from the Chlamydomonadales – a
group renowned for harbouring some of the largest plastomes on
record, including those of Volvox carteri (c. 525 kb) (Smith & Lee,
2010) andHaematococcus lacustris (1352 kb) (Bauman et al., 2018;
Smith, 2018). The comparatively small size of the UWO241
ptDNA reflects its moderate noncoding content (< 50%) rather
than the absence of chlL, chlN and chlB, which together represent
only a small proportion of the DNA (< 5 kb) of plastomes. It has
been argued that the energy limitations from living in a low-light
environment contributed to the evolutionary reduction of chloro-
plast genome size (Marcelino et al., 2016), making the reduced size
of UWO241 plastome all the more interesting. The UWO241
mitochondrial genome, however, is the largest and most bloated
mitosome observed to date from the Chlamydomonadales (Del
Vasto et al., 2015), measuring 59.9 kb and containing more than
75% noncoding DNA (Fig. S2).

There are other clear-cut examples of the loss of DPOR in
green algae, including from prasinophytes Ostreococcus tauri and
Micromonas pusilla (Hunsperger et al., 2015) but, to the best of
our knowledge, this is the first concrete case from the
Chlorophyceae (Table S3). Plastome sequencing has suggested
that DPOR was abandoned in the chlorophyceans Hafniomonas
laevis and Neochloris aquatica (Lemieux et al., 2015; Fu�c�ıkov�a
et al., 2016), as well as certain ulvophytes and pedinophyceans
(e.g. Pedinomonas minor) (Turmel et al., 2017); however,
nuclear and mitochondrial genome analyses are needed to
confirm these findings. It is notable that N. aquatica has been
isolated in multiple places on mainland Antarctica, including
frozen ponds (Campbell & Claridge, 1987). The absence of
DPOR has also been documented in algae with complex
plastids, such as the cryptophyte Guillardia theta, the stra-
menopile Phaeodactylum tricornutum, and the haptophyte
Emiliania huxleyi (Fong & Archibald, 2008; Hunsperger et al.,
2015; Kim et al., 2017). Most of these algae are marine
phytoplankton that are often found in iron-depleted ocean
environments where the costs of producing an iron-requiring
DPOR protein may outweigh its benefits (Behrenfeld et al.,
2006; Bowler et al., 2010). Understanding the loss of light-
independent chlorophyll biosynthesis from UWO241 – an alga
from a light-limited environment – is not so straightforward. To
understand the absence of DPOR in this alga we need to
carefully examine its extreme environment.

A closer look at Lake Bonney

Living in a permanently ice-covered Antarctic lake with continual
shading and long periods of sustained darkness would appear to be
an ideal place to haveDPOR (Ueda et al., 2014).Moreover, the fact
that the light penetrating the waters of Lake Bonney is skewed
towards the blue-green spectrum where LPOR is thought to be less
efficient (Koski & Smith, 1948; Hanf et al., 2012) would seem to
makeDPOR all themore valuable –not tomention thatUWO241
survival depends on blue light, as it reverts to a downregulated
photochemical state and is unable to grow in the presence of red
light (Morgan-Kiss et al., 2005).
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So, why has UWO241 lost this important enzyme? The levels of
iron in Lake Bonney at the depth at which UWO241 is found are
potentially quite low (Ward et al., 2003;Mikucki et al., 2004). But
if an iron deficiency contributed to the loss of DPOR in this species
then one might also expect other iron-dependent proteins to have
been lost or substituted, particularly the replacement of ferredoxin
with flavodoxin, which has occurred in certain algae (La Roche
et al., 1993, 1995). This is not the case here: UWO241 has two
near-identical copies of the ferredoxin gene, and accumulates high
amounts of functional ferredoxin protein, which is thought to be an
adaptation to the cold (Cvetkovska et al., 2018). That said,
UWO241 does display an iron-stressed phenotype and can show
signs of iron stress even under conditions that are iron replete
(Cook, 2018). Moreover, iron stress can be exacerbated by high
salinity (Tripathi et al., 2018) and, as already noted, the depth at
which UWO241 was isolated is hypersaline.

However, Lake Bonney does have one striking feature that could
shed some light on the loss of DPOR in UWO241. The dissolved
oxygen concentration over the first 15m is very high (> 1000 lM),
c. 250–350% higher than would be predicted if the lake was not ice
covered and saturated with air above its surface (Morgan-Kiss et al.,
2006), and it remains high (c. 200% air saturation) at 17 m, where
UWO241 is found. This is significant because, as noted earlier, the
Achilles’ heel of DPOR is its oxygen-sensitive iron�sulfur cluster
(Yamazaki et al., 2006; Ueda et al., 2014; Stol�arik et al., 2017),
whereas LPOR is insensitive to oxygen. If the high dissolved oxygen
content of Lake Bonney inhibits the functioning of DPOR, then
one would presume that there would be no deleterious effect
resulting from a mutation that knocked out the DPOR pathway.
This nonadaptive scenario could explain why we did not find the
chlL, chlN or chlB genes in UWO241: their sequences have slowly
eroded through the steady accumulation of neutral mutations. Of
course, if this hypothesis is correct, then the DPOR from not just
UWO241 but from other photosynthetic species within Lake
Bonney should also be rendered nonfunctional by the high oxygen
concentrations of the water above the chemocline and therefore be
susceptible to knockout. This reasoning fits well with previous
hypotheses arguing that certain land plants and algae have lost
DPOR because present-day atmospheric oxygen levels are incom-
patible with the oxygen-sensitive DPOR enzyme (Reinbothe et al.,
1996; Schoefs & Franck, 2003; Hunsperger et al., 2015). Finally,
there also is some evidence that DPOR might be cold-sensitive, at
least in land plants (Muramatsu et al., 2001).

It is also highly possible that the loss of DPOR was not brought
about by the conditions of Lake Bonney and that it did not
specifically occur in UWO241 or in the ancestral ‘Lake Bonney’
lineage that gave rise to UWO241. Rather, DPOR may have
already been absent in the ancestral ‘high-light’ Chlamydomonas
population that colonised Antarctica and eventually led to the
present-day UWO241 strain inhabiting Lake Bonney. Support for
this hypothesis comes from phylogenetic analyses showing that the
closest known relatives of UWO241 are marine species (e.g.
Chlamydomonas parkeae) known to exist in shallow water
(Possmayer et al., 2016), which is typically an environment rich
in red light and, therefore, one favoring LPOR over DPOR.
Currently, there are no available chloroplast genome sequences for

any close marine relatives of UWO241. The closest relative for
which there are ptDNA data is Chlamydomonas moewusii, a
freshwater species encoding DPOR (Boudreau et al., 1994).

Other potential examples from Lake Bonney and
beyond

Lake Bonney harbours a diversity of photosynthetic eukaryotes,
including chlorophytes, cryptophytes, haptophytes, and stra-
menopiles, which have been shown to be vertically stratified within
the water column (Bielewicz et al., 2011; Kong et al., 2014; Dolhi
et al., 2015; Li et al., 2016). Cryptophytes, for instance, dominate
the nutrient-deficient shallower water (6–10 m), whereas hapto-
phytes and stramenopiles occupy the mid-depths (c. 13 m), and
chlorophytes reside in the deepest layers (15–20 m) of the photic
zone (Bielewicz et al., 2011), belowwhich the lake becomes anoxic.
UWO241 is currently the only photosynthetic protist from Lake
Bonney to have its chloroplast genome completely sequenced.
Therefore, it is not known if other eukaryotic algae in the lake (or
any of the other lakes in the McMurdo Dry Valleys) have lost
DPOR. One of the most prolific stramenopiles within Lake
Bonney belongs to the genusNannochloropsis (Kong et al., 2012). It
is noteworthy, in this context, that the six available plastome
sequences from Nannochloropsis species all contain the genes chlL,
chlN, and chlB (Wei et al., 2013), but it should be stressed that the
presence/absence of DPOR can occur even among members of the
same genus.

UWO241 is not the only chlamydomonadalean in Lake
Bonney. Chlamydomonas sp. ICE-MDV is, in fact, the dominant
chlorophyte in the lake (Li et al., 2016).This psychrophile resides at
a depth of 13–15 m where the dissolved oxygen concentration is
even higher and the iron levels lower than in the deeper photic zone
where UWO241 is located. Although data on Chlamydomonas sp.
ICE-MDV are limited, it has been shown that it can grow under a
broad range of light intensities but cannot grow in the dark in the
presence of organic carbon (Li et al., 2016). Given all of this, it will
be especially interesting to see ifChlamydomonas sp. ICE-MDVhas
forfeited DPOR, but this information will only be useful alongside
detailed phylogenetic data on this species and on its relationship to
UWO241. Its namesake,Chlamydomonas ICE-L (arguably the best
studied psychrophilic green alga) does encode DPOR, but unlike
UWO241 and ICE-MDV, it is found on Antarctic sea ice where
the oxygen concentrations are not extremely high, and it hails from
a different chlamydomonadalean clade (the Monadinia) than that
of UWO241 (the Moewusinia) (Zhang et al., 2018).

The physiological consequences of an unusual
chlorophyll biosynthesis pathway

Whatever the evolutionary explanation for jettisoning DPOR,
surely its absence in UWO241 has impacted this alga’s ability to
produce chlorophyll and efficiently perform photosynthesis in a
light-limited environment. In addition to the loss of DPOR, our
genomic characterization of the chlorophyll biosynthesis pathway
in UWO241 revealed the duplication of CAO (Figs S4, S5),
encoding an indispensable regulatory gene for chlb production.
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Previous work showed that UWO241 has a normal complement of
photosynthetic pigments but exhibits a low chla : b ratio (c. 1.8–
2.2) compared with other green algae (> 3). Moreover, chlb is
exclusively associated with the light-harvesting antenna around
PSII (Pocock et al., 2007; Szyszka et al., 2007). Chlb absorbs blue
light efficiently, and higher amounts of this pigment are typically
associated with shade adaptation (Falkowski &Owens, 1980). It is
tempting to speculate that the duplication of CAO could be
responsible for the constitutively increased levels of chlb in
UWO241 and could be an adaptation tomaximize light absorption
in the depths of Lake Bonney, but a detailed functional analysis of
the CAO enzymes will be needed to make such assertions.

Recent field experiments on the acclimation of natural algal
populations and transplanted samples of UWO241 within Lake
Bonney demonstrated that seasonal chla accumulation trends were
uncoupled from light availability during the polar night transition
and continued to increase as light diminished (Morgan-Kiss et al.,
2016). The accumulation of chlorophyll at the end of the growing
seasonmay be indicative of photoacclimation to extreme shade (i.e.
increase in chlorophyll amounts per cell), but exactly how
UWO241 achieves this, particularly without the use of DPOR,
remains to be determined. This work led to the development of a
model suggesting that during light�dark transitions, UWO241
undergoes a cascade of physiological and molecular alterations to
the photosynthetic apparatus, keeping it in a downregulated but
functional form that can be rapidly reactivated by sunlight
(Morgan-Kiss et al., 2006, 2016). Such a strategy could be
advantageous in polar environments where the growing season is
short. Developingmethodologies to study chlorophyll production,
retention and degradation in UWO241 and related algae from
LakeBonneyduring transition to complete darknesswould provide
the experimental evidence to support this theory.

These seasonal trends in chla abundance will become all the
more interesting once there are data on the presence�absence of
DPOR from additional Lake Bonney phytoplankton. Further
workmay show thatUWO241 is not unique in its inability to carry
out light-independent chlorophyll biosynthesis, but there should
be some caution in assuming that what is true for UWO241 is also
true for its photosynthetic counterparts in Lake Bonney and
beyond, especially with respect to photosynthesis. As already
mentioned, UWO241 is unique among all explored natural
photosynthetic eukaryotes in that it cannot undergo photosyn-
thetic state transitions (i.e. it is permanently locked in state 1)
(Morgan-Kiss et al., 2002). Undoubtedly, the more we learn about
this cold-loving biflagellate, the more atypical it turns out to be,
even compared with other extremophilic Chlamydomonas species.
For now, we will have to wait and see just how unconventional the
loss of DPOR is in the context of the oxygen-rich lakes of the
McMurdo Dry Valleys and to close marine relatives of UWO241.
But, hopefully, we will not be in the dark for long.
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