
 1 

Pervasive, genome-wide transcription in the organelle genomes of diverse plastid-1 

bearing protists  2 

 3 

Investigation 4 

 5 

Matheus Sanitá Lima* and David Roy Smith
* 6 

 7 

* 
Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 8 

5B7  9 

 G3: Genes|Genomes|Genetics Early Online, published on September 21, 2017 as doi:10.1534/g3.117.300290

© The Author(s) 2013. Published by the Genetics Society of America. 



 2 

Running title: Organellar pervasive transcription  10 

 11 

Keywords: RNA-seq; mitochondrial transcription; organelle gene expression; plastid 12 

transcription; protists. 13 

 14 

Corresponding author: Matheus Sanitá Lima, Department of Biology, Biological & 15 

Geological Sciences Building, University of Western Ontario, 1151 Richmond Street, 16 

London, Ontario, Canada, N6A 5B7, phone: (+1) 519 661 2111 ex. 86482, 17 

msanital@uwo.ca  18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

mailto:msanital@uwo.ca


 3 

Abstract 38 

Organelle genomes are among the most sequenced kinds of chromosome. This is largely 39 

because they are small and widely used in molecular studies, but also because next-40 

generation sequencing (NGS) technologies made sequencing easier, faster, and cheaper. 41 

However, studies of organelle RNA have not kept pace with those of DNA, despite huge 42 

amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known 43 

about organelle transcription in non-model species, and most of the available eukaryotic 44 

RNA-seq data have not been mined for organelle transcripts. Here, we use publicly 45 

available RNA-seq experiments to investigate organelle transcription in 30 diverse 46 

plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq 47 

data to organelle genomes revealed pervasive, genome-wide transcription, regardless of 48 

the taxonomic grouping, gene organization, or non-coding content. For every species 49 

analyzed, transcripts covered at least 85% of the mitochondrial and/or plastid genomes 50 

(all of which were 105 kb), indicating that most of the organelle DNA—coding and 51 

non-coding—is transcriptionally active. These results follow earlier studies of model 52 

species showing that organellar transcription is coupled and ubiquitous across the 53 

genome, requiring significant downstream processing of polycistronic transcripts. Our 54 

findings suggest that non-coding organelle DNA can be transcriptionally active, raising 55 

questions about the underlying function of these transcripts and underscoring the utility 56 

of publicly available RNA-seq data for recovering complete genome sequences. If 57 

pervasive transcription is also found in bigger organelle genomes (>105 kb) across a 58 

broader range of eukaryotes, this could indicate that non-coding organelle RNAs are 59 

regulating fundamental processes within eukaryotic cells.  60 
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Introduction 61 

Mitochondrial and plastid DNAs (mtDNA and ptDNAs) are among the most 62 

sequenced and best-studied types of chromosome (Smith 2016). This is not surprising 63 

given the widespread use of organelle genome data in forensics, archaeology, 64 

phylogenetics, biotechnology, medicine, and other scientific disciplines. Unfortunately, 65 

investigations of organelle RNA have not kept pace with those of the DNA, and for most 66 

non-model species there are little or no published data on organelle transcription (Sanitá 67 

Lima et al. 2016). But this is poised to change. 68 

Next generation sequencing (NGS) technologies, ballooning genetic databanks, 69 

and new bioinformatics tools have made it easier, faster, and cheaper to sequence, 70 

assemble, and analyze organelle transcriptomes (Smith 2016). The National Center for 71 

Biotechnology Information (NCBI) Sequence Read Archive (SRA), for example, 72 

currently houses tens of thousands of freely available eukaryotic RNA sequencing (RNA-73 

seq) datasets (Kodam et al. 2012), hundreds of which come from non-model species 74 

and/or poorly studied lineages (Keeling et al. 2014). Among their many uses, these data 75 

have proven to be a goldmine for mitochondrial and plastid transcripts (Smith 2013; Shi 76 

et al. 2016; Tian and Smith 2016).  77 

Recently, researchers have started mining the SRA for organelle-derived reads, 78 

and already these efforts have yielded interesting results, such as pervasive organelle 79 

transcription—i.e., transcription of the entire organelle genome, including coding and 80 

non-coding regions (Shi et al. 2016; Tian and Smith 2016). This kind of research has 81 

been further aided by a range of new bioinformatics tools designed for the assembly, 82 
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annotation, and analysis of organelle genomes and transcriptomes from NGS data 83 

(Castandet et al. 2016; Dierckxsens 2016; Soorni 2017). Nevertheless, most of the 84 

eukaryotic RNA-seq data within the SRA have not been surveyed for organelle 85 

transcripts, particularly those from plastid-bearing protists, and it is not known if 86 

pervasive organelle transcription is a common theme among diverse eukaryotic groups. If 87 

it is, then RNA-seq could presumably be used to glean complete or near-complete 88 

organelle genomes in the presence or absence of DNA data, which would be particularly 89 

useful, for example, in cases where there are abundant RNA-seq data but no available 90 

DNA information. 91 

It goes without saying that the complexities of organelle transcription cannot be 92 

unravelled solely via in silico RNA-seq analyses (Sanitá Lima et al. 2016). Indeed, 93 

organelle gene expression is surprisingly complex and often highly convoluted (Moreira 94 

et al. 2012), as anyone who has studied the mtDNA of Trypanosome spp. (Feagin et al. 95 

1988) or the ptDNA of Euglena gracilis (Copertino et al. 1991) can attest. If organelle 96 

transcriptional research has taught us anything over the past few decades, it is that even 97 

the seemingly simplest mtDNAs and ptDNAs can have unexpectedly complicated 98 

transcriptomes and/or modes of gene expression (Feagin et al. 1988; Copertino et al. 99 

1991; Marande and Burger 2007; Masuda et al. 2010; Vlcek et al. 2011; Lang et al. 2014; 100 

Valach et al. 2014; Smith and Keeling 2016). Moreover, accurately and thoroughly 101 

characterizing organelle transcriptional architecture can take years of detailed laboratory 102 

work using an assortment of techniques (Marande et al. 2005; Nash et al. 2007; Barbrook 103 

et al. 2012; Feagin et al. 2012; Jackson et al. 2012; Mungpakdee et al. 2014; Dorrell and 104 

Howe 2015). That said, RNA-seq is a quick and cost-effective starting point for early 105 
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exploratory work of organelle transcription, and it can help identify lineages or species 106 

with particularly bizarre or unconventional transcriptional architectures.  107 

Here, we use publically available RNA-seq data to survey mitochondrial and 108 

plastid transcription in a variety of eukaryotic algae. To streamline and simplify our 109 

analyses, we focus specifically on species for which the mitochondrial and/or plastid 110 

genomes have been completely sequenced and are not overly long (105 kb). Our 111 

explorations reveal pervasive, genome-wide organelle transcription among disparate 112 

plastid-bearing protists and highlight the potential of publically available RNA-seq data 113 

for organelle research. 114 

Materials and Methods 115 

By scanning the SRA (using NCBI's Taxonomy Browser), we identified 30 116 

plastid-bearing species for which there are complete mitochondrial and/or plastid genome 117 

sequences and abundant RNA-seq data. We downloaded the RNA-Seq reads from the 118 

SRA (https://www.ncbi.nlm.nih.gov/sra) and the organelle DNAs from the Organelle 119 

Genome Resources section of NCBI (https://www.ncbi.nlm.nih.gov/genome/organelle/) 120 

or GenBank (https://www.ncbi.nlm.nih.gov/genbank/). See Table S1 for detailed 121 

information on the RNA-seq and organelle genome data we downloaded, including 122 

accession numbers, sequencing technologies, read counts, organelle DNA features, and 123 

the strains used for genome and RNA sequencing. 124 

We mapped the RNA-Seq reads to the corresponding organelle genomes using 125 

Bowtie 2 (Langmead and Salzberg 2012) implement through Geneious v9.1.6 126 

(Biomatters Ltd., Auckland, NZ), a user-friendly, commercial bioinformatics software 127 
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suite, which contains a graphical user interface (Kearse et al. 2012). All mapping 128 

experiments were carried out using default settings, the highest sensitivity option, and a 129 

min/max insert size of 50 nt/750 nt; we also allowed each read to be mapped to two 130 

locations to account for repeated regions, which are common in organelle genomes 131 

(Smith and Keeling 2015). The mapping histograms shown in Figures 2–4 were extracted 132 

from Geneious.  133 

Data availability  134 

The datasets analysed in this study are available in the SRA – Sequence Reads 135 

Archive – database (https://www.ncbi.nlm.nih.gov/sra/) and their respective accession 136 

numbers are listed in Table S1. Figure S1 depicts transcription maps for all 30 species 137 

analysed. 138 

Results and Discussion 139 

Little genome, big RNA:  genome-wide, polycistronic transcription in algal organelle 140 

DNAs  141 

After an exhaustive search of GenBank and the SRA, we identified 30 plastid-142 

bearing protists for which there were abundant RNA-seq data as well as complete 143 

mtDNA and/or ptDNA sequences with lengths of ~100 kb or smaller. We did not include 144 

larger organelle DNAs because we wanted to reconstruct entire organelle genomes from 145 

the transcript data alone and assumed that it would be easier to do so using RNA from 146 

small to moderately sized organelle genomes. Moreover, organelle DNAs greater than 147 

100 kb are typically repeat rich (Smith and Keeling 2015), making RNA-seq mapping 148 

much more challenging and error-prone (Treangen and Salzberg 2011). Nonetheless, the 149 

https://www.ncbi.nlm.nih.gov/sra/
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30 species we analyzed span the gamut of plastid-containing eukaryotic diversity, and 150 

include taxa with primary plastids and eukaryote-eukaryote-derived (i.e., “complex”) 151 

plastids (Keeling 2013) as well as those with ptDNA-containing nonphotosynthetic 152 

plastids, such as apicomplexan parasites (Table 1, Figure 1, Table S1 and Figure S1). The 153 

organelle genomic architectures of these species vary in structure (e.g., linear- vs. 154 

circular-mapping), size (5.8–105 kb), gene repertoire (e.g., gene rich vs. gene poor), gene 155 

arrangement (e.g., intact vs. fragmented genes), and coding content (e.g., ~7.5-95%) 156 

(Table 1, Figures 2–4, Table S1 and Figure S1). We made sure that the RNA-seq and 157 

corresponding organelle genome data always came from the same species, but, in a few 158 

instances, they were from different strains of the same species (Table S1). It should be 159 

stressed that most of the RNA-seq experiments we sourced were generated under stress-160 

related conditions and often using very different protocols (Table S1). But these caveats 161 

did not seem to impede the mapping experiments.  162 

Indeed, for each of the species and genomes we explored, the raw RNA-seq reads 163 

covered the entire or nearly entire organelle DNA, regardless of taxonomic grouping, 164 

organelle type (i.e., mtDNA vs. ptDNA), or underlying genomic architecture (Table 1, 165 

Figure 1, Table S1 and Figure S1). Not only was the overall read coverage high across 166 

the various mitochondrial and plastid genomes (85-100%), but the mean read depth 167 

(reads/nt), with few exceptions, was consistently high, ranging from 5 to >23,000 (Table 168 

1). Assuming the RNA-seq reads that mapped correspond to bona fide organelle-derived 169 

transcripts (see below), these findings suggest that transcription is pervasive, spanning 170 

most or all of the organelle genome, including non-coding regions, in a diversity of 171 

plastid-bearing protists.  172 
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Close inspection of the RNA-seq mapping results revealed some interesting trends 173 

within and among the various lineages and genomes (Figures 2–4). As expected, the 174 

overall RNA read coverage was particularly high (93–100% of the reference genome) for 175 

the miniature and highly compact mtDNAs of the five apicomplexan parasites in our 176 

dataset (Figure 2), and when applicable (e.g., Babesia bovis) it extended into and 177 

encompassed the entire mitochondrial telomeres, as has been observed for linear 178 

mtDNAs from other lineages (Tian and Smith 2016). These results are consistent with 179 

earlier work on apicomplexans showing that their mitochondrial genomes are transcribed 180 

in a polycistronic manner (Ji et al. 1996; Rehkopf et al. 2000), and reinforce the notion 181 

that mitochondrial telomeres are involved in gene expression.  182 

The RNA-seq data of the circular-mapping mtDNAs from the green alga 183 

Chlamydomonas moewusii, the glaucophyte alga Cyanophora paradoxa, and the 184 

stramenopile alga Heterosigma akashiwo are also consistent with a polycistronic mode of 185 

transcription, revealing deep, genome-wide RNA coverage across most of the 186 

chromosomes, including intergenic regions (Figure 3). Full transcription also appears to 187 

be occurring in the mtDNAs from other major algal groups, including brown algae (e.g., 188 

Fucus vesiculosus), red algae (e.g., Porphyra purpurea), dinoflagellate algae (e.g., 189 

Symbiodinium minutum), and diatom algae (e.g., Pseudo-nitzschia multiseries), as well as 190 

in both compact and moderately bloated mtDNAs (57–90% coding) (Table 1, Table S1 191 

and Figure S1).  192 

Almost identical trends were observed for the plastid genome data, all of which 193 

showed 85.5–100% RNA coverage and a mean read depth of 72–5,524 (Table 1, Figure 194 

4). Like with the mtDNAs, the overall RNA-seq read coverage was especially high for 195 
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small, compact ptDNAs, such as those from apicomplexan parasites (e.g., Toxoplasma 196 

gondii) (Table 1) and that of the nonphotosynthetic green alga Helicosporidium sp. (~37 197 

kb; ~95% coding), 98% of which was represented at the RNA level (Figure 4). The 198 

secondary, red-algal-derived plastid genomes of the photosynthetic chromerid Vitrella 199 

brassicaformis and the haptophyte Emiliana huxleyi were also well represented in the 200 

RNA reads (100% and 97% coverage, respectively – Figure 4), as were those of C. 201 

moewusii and H. akashiwo (Table 1, Table S1 and Figure S1). Overall, these data, 202 

alongside previous experiments (Mercer et al. 2011; Zhelyazkova et al. 2012; Shoguchi et 203 

al. 2015; Shi et al. 2016; Tian and Smith 2016), show that pervasive polycistronic 204 

transcription is the norm rather than the exception among mtDNAs and ptDNAs, and 205 

underscore the usefulness of RNA-seq for recovering whole organelle genomes, which 206 

can then be used in an array of downstream applications, such as for phylogenetic 207 

analyses, barcoding, or measuring nucleotide diversity within and among populations. 208 

RNA-seq: an untapped resource for organelle research  209 

None of the RNA-seq datasets employed here were initially generated with the 210 

intent of studying organelle transcription, and to the best of our knowledge we are the 211 

first group to mine organelle transcripts from these experiments. Most, if not all, of the 212 

NGS data used here were produced for investigating nuclear gene expression. For 213 

instance, the stramenopile alga Nannochloropsis oceanica is a model candidate for 214 

harvesting biofuels and, thus, the currently available RNA-seq experiments for this 215 

species are aimed at better understanding its growth and lipid production, and 216 

maximizing its economic potential (Li et al. 2014). The same can be said for many of the 217 

other species we investigated, such as the seaweeds Undaria pinnatifida and Saccharina 218 
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japonica, which are harvested for food (Shan et al. 2015, Ye et al. 2015), and the 219 

apicomplexans Babesia sp. and Theileria sp., which parasitize livestock (Gardner et al. 220 

2005; Brayton et al. 2007).  221 

 Most scientists do not have the time, resources, or expertise to explore every 222 

aspect of an NGS dataset, especially when considering the prodigious amount of 223 

information that can be contained within one. But if more scientists knew how easy it was 224 

to mine organelle transcriptomes from RNA-seq data, they might be more inclined to 225 

study various aspects of organelle genetics, even if it was merely collecting a few 226 

sequences for building a phylogenetic tree or for barcoding (Smith 2013). And one 227 

cannot forget that organelle biology is intimately tied to that of the nucleus—to fully 228 

understand the latter one needs to study the former, and vice versa (Woodson and Chory 229 

2008).  230 

As shown here, and elsewhere (Shi et al. 2016; Tian and Smith 2016), complete 231 

organelle genomes can be easily and quickly reconstructed from NGS experiments, 232 

provided that these experiments were generated in a way that did not exclude organelle 233 

transcripts from the sequencing libraries. In some instances, only a single RNA-seq 234 

dataset was needed to successfully recover an entire organelle transcriptome—we 235 

recovered 99.4% of the Pavlova lutheri plastid genome from one 6.7 Gb paired-end 236 

RNA-seq experiment. In other cases, we had to source multiple transcriptomic 237 

experiments to recover the complete organelle genome (Table S1), suggesting that the 238 

libraries used for the cDNA sequencing were depauperate in organelle-derived 239 

transcripts. This could be because RNA-seq libraries are often filtered for polyadenylated 240 
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transcripts (mRNA) and in some lineages organelle RNA can become unstable upon 241 

polyadenylation (Rorbach et al. 2014). Other library preparation techniques, however, are 242 

much more organelle friendly, including those that target non-coding nuclear RNAs (Di 243 

et al. 2014) as well as those catered to total cellular RNA (Hotto et al. 2011).    244 

One must be careful not to overstate or exaggerate the usefulness of online RNA-245 

seq data for organelle research. There are limitations to what can be deduced about gene 246 

expression from the mapping or de novo assembly of sequencing reads. Moreover, NGS 247 

data downloaded from public databanks can have little or no accompanying information 248 

about how they were generated, leaving users guessing about the underlying experimental 249 

conditions. And this is to say nothing about the problems of combining and comparing 250 

RNA-seq data that were generated by different laboratory groups and/or using different 251 

protocols. These factors prevented us from carrying out experiments comparing the 252 

mapping rates among datasets with different RNA-selection protocols (e.g. poly-A versus 253 

rRNA depletion). There is also a danger of confusing the transcripts of nuclear 254 

mitochondrial-like sequences (NUMTs) and nuclear plastid-like sequences (NUPTs) for 255 

genuine organelle RNA, but this is less of an issue for protists than it is for animals and 256 

land plants (Smith et al. 2011). Finally, there is always the possibility of genomic DNA 257 

contamination within the cDNA library, even after multiple rounds of DNase treatment 258 

(Haas et al. 2012), but this is an issue affecting all types of RNA-seq analyses, not just 259 

those exploring organelle RNA.    260 

Despite these drawbacks, scouring RNA-seq databases can reveal important 261 

features about organelle transcriptional architecture, such as splice variants, post-262 
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transcriptional processing, and RNA editing (Castandet et al. 2016) — or the absence of 263 

such features. For example, there were no signs of substitutional or insertion/deletion 264 

RNA editing in any of the organelle genomes we investigated, but we did detect putative 265 

polycistronic processing sites (Figure 3 and Figure 4). RNA-seq has also helped identify 266 

transcriptional start sites in the plastid genome of barley (Zhelyazkova et al. 2012) and 267 

whole-genome transcription in land plant ptDNAs (Shi et al. 2016). Although not 268 

employed in this study, differential (d)RNA-seq and strand-specific (ss)RNA-seq can 269 

provide an even deeper resolution of organelle transcription, exposing antisense RNAs 270 

and small non-coding RNAs (Mercer et al. 2011; Zhelyazkova et al. 2012). As more 271 

dRNA-seq and ssRNA-seq experiments are deposited in the SRA (mostly from model 272 

species), they can be used to examine fine-tuned features of organelle gene expression 273 

using a similar approach to that taken here. 274 

An emerging and recurring theme from organelle transcriptional studies 275 

(including this one) is that mitochondrial and plastid genomes are pervasively transcribed 276 

(Mercer et al. 2011; Zhelyaskova et al. 2012; Dietrich et al. 2015; Shoguchi et al. 2015; 277 

Shi et al. 2016; Tian and Smith 2016). This is also true for the genomes of 278 

alphaproteobacteria and cyanobacteria (Landt et al. 2008; Schlüter et al. 2010; Mitschke 279 

et al. 2011; Mitschke, Vioque et al. 2011; Shi et al. 2016), suggesting that pervasive 280 

organelle transcription is an ancestral trait passed down from the bacterial progenitors of 281 

the mitochondrion and plastid (Shi et al. 2016). Many nuclear genomes also show 282 

pervasive transcription (Berretta and Morillon 2009), including those of Saccharomyces 283 

cerevisiae (David et al. 2006), Drosophila melanogaster (Stolc et al. 2004), Oryza sativa 284 

(Li et al. 2006), and Mus musculus (Carninci et al. 2005). It is estimated that up to ~75% 285 
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of the human nuclear genome can be transcriptionally active when looking across tissues 286 

and subcellular compartments (Djebali et al. 2012). In fact, the more we study genome-287 

wide transcription, the more we realize that few regions in a genome are entirely exempt 288 

from transcription and that genomes are veritable ‘RNA machines’, producing multiple 289 

types of RNA from end to end (Amaral et al. 2008; Wade and Grainger 2014). Some 290 

have suggested that pervasive transcription can provide raw RNA material for new 291 

regulatory pathways (Libri 2015). However, certain bacteria can repress pervasive 292 

transcription (Lasa et al. 2011; Singh et al. 2014), so obviously it is not a good strategy 293 

all of time, at least in some systems.  294 

It remains to be seen if big (>>100 kb) organelle genomes, such as land plant 295 

mtDNAs (Sloan et al. 2012) and chlamydomonadalean ptDNAs (Featherston et al. 2016), 296 

are fully transcribed, but preliminary work suggests that they are. RNA-seq analyses 297 

revealed complete transcription of the Symbiodinium minutum mtDNA (~327 kb) 298 

(Shoguchi et al. 2015), Chlamydomonas reinhardtii ptDNA (~204 kb), and other bloated 299 

organelle DNAs (Shi et al. 2016). Therefore, unravelling pervasive transcription in small 300 

and giant organelle genomes across eukaryotes could indicate that non-coding organelle 301 

RNAs actually have important, undescribed functions. One should be careful not to 302 

mistake transcription for function (Doolittle 2013) and not underestimate transcriptional 303 

noise (Struhl 2007), but non-coding organelle RNAs (both long and short) are known to 304 

carry out crucial regulatory functions (Hotto et al. 2011; Small et al. 2013; Dietrich et al. 305 

2015). Perhaps having more non-coding DNA and therefore more non-coding RNA leads 306 

to increased regulatory control of certain metabolic pathways within organelles (e.g., 307 

those for the development of different plastids in land plants [Jarvis and López-Juez 308 
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2013]) or more fine-tuned responses to environmental conditions (e.g., changing trophic 309 

strategies in mixotrophic algae [Worden et al. 2015]). But if so, why is there such a 310 

massive variation in organelle genome size (and transcriptome size) within and among 311 

lineages (Khaitovich et al. 2004; Lynch et al. 2006; Smith and Keeling 2015; Smith 2016; 312 

Figueroa-Martinez et al. 2017a; Figueroa-Martinez et al. 2017b)? Alas, there is still a lot 313 

to be learned about organelle gene expression, and thankfully online RNA-seq data are 314 

here to help pave the way. 315 

Conclusions 316 

The primary goal of this study was to show that entire organelle genome 317 

sequences from diverse plastid-containing species can be reconstructed from publically 318 

available RNA-seq datasets within the SRA, as has been previously argued (Smith 2013). 319 

On this front, we were successful: algal mtDNAs and ptDNAs from disparate lineages 320 

consistently undergo full or nearly full transcription. Thus, available RNA-seq data are an 321 

excellent starting point and an untapped resource for exploring transcriptomic and 322 

genomic architecture from poorly studied species. Nevertheless, online RNA-seq 323 

experiments have their limitations and drawbacks, and one should be mindful when 324 

employing such data. It will be interesting to see if the major trends reported here will be 325 

borne out by future investigations, specifically those of larger organelle genomes. 326 

Ultimately, a deep understanding of organelle gene expression requires a multi-pronged 327 

approach, employing both traditional molecular biology techniques as well as more 328 

modern high-throughput methods (Sanitá Lima et al. 2016). 329 
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Figure Legends 512 

 513 

Figure 1. Pervasive organelle genome transcription across the eukaryotic tree of life.  514 

Organelle genomes 105 kb are fully or almost fully transcribed in diverse eukaryotic groups, 515 

regardless of their coding content and structure. Outer dashed boxes summarize the breadth of 516 

organelle genomes analysed within each major eukaryotic group. Representation of organelle 517 

genomes and organelles are not to scale. Refseq coverage represents the percentage of the 518 

reference genome sequence that was covered by one or more RNA-seq reads in the mapping 519 

analyses. Phylogenetic tree is adapted from (Burki 2014) for the relationships among major 520 

groups; branches within groups are merely illustrative and not based on sequence analyses. The 521 

tree was generated using the NCBI Common Tree taxonomy tool (Federhen 2012) and iTOL 522 

v3.4.3 (Letunic and Bork 2016). 523 

 524 

Figure 2. Full transcription of small mitochondrial genomes in Apicomplexa.  525 

Mapping histograms (or transcription maps) depict the coverage depth – number of transcripts 526 

mapped per nucleotide – on a log scale. We used the organelle genome annotations already 527 

present in the genome assemblies deposited in GenBank (accession numbers provided in Table 528 

1 and Table S1). Mapping contigs are not to scale and direction of transcription is represented by 529 

the direction of the arrows – annotated genes. Mapping histograms were obtained from Geneious 530 

v9.1.6 (Kearse et al. 2012). 531 

 532 

Figure 3. Polycistronic transcription in mitochondrial genomes of chlorophytes, 533 

raphidophytes, and glaucophytes.   534 

Chlamydomonas moewusii (Chlorophyta), Heterosigma akashiwo (Raphidophyta) and 535 

Cyanophora paradoxa (Glaucophyta) exhibited clear drops of transcript coverage in some 536 

potentially non-coding regions (intergenic regions, intros and hypothetical proteins). Mapping 537 

histograms follow the same structure as in Figure 2 and mapping contigs are not to scale.  538 

 539 

Figure 4. Entire and near entire transcriptional coverage of diverse plastid genomes. 540 

Vitrella brassicaformis (Chromerida) exhibited entire genome transcription, whereas 541 

Helicosporidium sp (Chlorophyta) and Emiliana huxleyi (Haptophyta) had near entire genome 542 

transcriptional coverage. Drops in coverage happened mostly in intergenic regions of the E. 543 

huxleyi plastid genome. Mapping histograms follow the same structure as in Figure 2 and Figure 544 

3; mapping contigs are not to scale.  545 

 546 
 547 
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Table 1 Diverse organelle (mitochondrial and plastid) genomes and their respective transcription rates (mean and percent coverage). 

 

TAXONOMIC GROUP AND 

SPECIES 
ORGANELLE 

GENBANK 

ENTRY 

GENOME 

SIZE (bp) 

MEAN 

COVERAGE 

(reads/nt) 

% 

REFSEQ
a
 

% 

CODING
b
 

API - Theileria parva mt NC_011005.1 5,895 710.934 99.7 67.5 

API - Plasmodium berghei mt LK023131.1 5,957 3,111.87 100 92.4 

API - Plasmodium falciparum mt AY282930.1 5,959 368.286 100 55.7 

API - Plasmodium vivax mt NC_007243.1 5,990 693.631 100 56.3 

API - Babesia bovis 
mt NC_009902.1 6,005 614.848 99.9 63.5 

api NC_011395.1 35,107 71.60 90.2 54.1 

API - Babesia microti mt LN871600.1 10,547 5.188 93.4 37 

CP - Chlamydomonas leiostraca mt NC_026573.1 14,029 136.967 95.8 86.4 

DF - Symbiodinium minutum mt LC002801 19,577 2,763.05 100 7.43 

CP - Chlamydomonas moewusii mt NC_001872.1 22,897 59.767 86.7 55.4 

CP - Pycnococcus provasolii mt GQ497137 24,321 2,942.35 99.8 87.7 

PP - Fucus vesiculosus mt NC_007683.1 36,392 98.866 97.9 90 

RP - Porphyra purpurea mt NC_002007.1 36,753 1,250.44 98.7 81.5 

RP - Pyropia haitanensis mt NC_017751.1 37,023 24.413 85.6 63.2 
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PP - Undaria pinnatifida mt NC_023354.1 37,402 165.098 92.8 89.9 

PP - Saccharina japonica mt NC_013476.1 37,657 145.915 100 89.4 

EP - Nannochloropsis oceanica mt NC_022258.1 38,057 118.754 95.8 88.8 

RH - Heterosigma akashiwo mt NC_016738.1 38,690 205.219 98.5 81.3 

RP - Pyropia yezoensis mt NC_017837.1 41,688 16.205 88 56.6 

DT - Pseudo-nitzschia multiseries mt NC_027265.1 46,283 1,261.27 96.4 71.5 

CP - Micromonas commoda mt NC_012643.1 47,425 180.623 94 82.5 

CP - Helicosporidium sp. 
mt NC_017841.1 49,343 147.453 94.7 65 

pt NC_008100.1 37,454 103.633 98 94.9 

GP - Cyanophora paradoxa mt NC_017836.1 51,557 3,355.88 94.6 58.9 

CP - Chlorella sorokiniana mt NC_024626.1 52,528 23,494.23 86.6 63 

CA - Chara vulgaris mt NC_005255.1 67,737 24.862 94.2 52.3 

CP - Micromonas commoda pt NC_012575.1 72,585 2,854.087 93.7 67.8 

CP - Picocystis salinarum pt NC_024828.1 81,133 142.060 85.5 90.6 

CR - Vitrella brassicaformis pt HM222968 85,535 5,523.59 100 88.5 

HP - Emiliana huxleyi pt NC_007288.1 105,309 789.915 97 85.8 

HP - Pavlova lutheri pt NC_020371.1 95,281 2,771.83 99.4 81 

API - Toxoplasma gondii apic NC_001799.1 34,996 1,501.45 95 80.7 
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MT, mitochondrion; PT, plastid; APIC, apicoplast API, Apicomplexa; CP, Chlorophyta; DF, Dinoflagellates; PP, Phaeophyta; RP, Rhodophyta; EP, 

Eustigmatophytes; RH, Raphidophyta; DT, Diatoms; GP, Glaucophyta; CA, Charophyta; CR, Chromerida; HP, Haptophyta. 

a 
Percentage of the reference genome sequence that is covered by one or more reads in the mapping contig. 

b 
Percentage of the coding region (tRNA-, rRNA- and protein-coding genes) in the organelle genome. The “% coding” of each genome was 

determined for this study using the function “extract annotation” in Geneious. We extracted tRNA-, rRNA- and protein-coding (CDS) gene 

annotations, then excluded spurious annotations and calculated the final length of coding sequences altogether.  
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