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Abstract  

Organelle genomes exhibit remarkable diversity in content, structure, and size, and in their modes 

of gene expression, which are governed by both organelle- and nuclear-encoded machinery. Next 

generation sequencing (NGS) has generated unprecedented amounts of genomic and 

transcriptomic data, which can be used to investigate organelle genome transcription. However, 

most of the available eukaryotic RNA-sequencing (RNA-seq) data are used to study nuclear 

transcription only, even though large numbers of organelle-derived reads can typically be mined 

from these experiments. Here, we use publicly available RNA-seq data to assess organelle genome 

transcription in 59 diverse plastid-bearing species. Our RNA mapping analyses unravelled 

pervasive (full or near-full) transcription of mitochondrial, plastid, and nucleomorph genomes. In 

all cases, 85% or more of the organelle genome was recovered from the RNA data, including non-

coding (intergenic and intronic) regions. These results reinforce the idea that organelles transcribe 

all or nearly all of their genomic material and are dependent on post-transcriptional processing of 

polycistronic transcripts. We explore the possibility that transcribed intergenic regions are 

producing functional non-coding RNAs, and that organelle genome non-coding content might 

provide raw material for generating regulatory RNAs.  

 

Key words: Mitochondrial transcription, non-coding RNA, organelle gene expression, pervasive 

transcription, plastid transcription.  
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Introduction 

Organelle genomes can be extreme at both the DNA and RNA levels (Smith and Keeling 

2015; Smith and Keeling 2016). Gene fragmentation (Barbrook et al. 2010), gene and chromosome 

number variation (Shao et al. 2012; Janouškovec et al. 2013), diverse genome topology (e.g., 

circular or linear with telomeres) (Bendich 2007), and genome size range (Sloan et al. 2012) are 

some of the many examples of organelles genomic diversity. Similarly, the expression of organelle 

genomes can be unconventional, including non-canonical genetic codes (Burger et al. 2003), 

substitutional or insertion/deletion RNA-editing (Castandet and Araya 2011), trans-splicing 

followed by polyadenylation (Vlcek et al. 2011), and even translational bypassing (Masuda et al. 

2010; Lang et al. 2014). In many instances, unravelling these complicated genomic and 

transcriptional architectures took years of laborious investigation, using a wide range of molecular 

biology techniques (Sanitá Lima et al. 2016). 

More recently, next generation sequencing (NGS) has allowed researchers to take a 

genome-wide approach to investigating organelle genomes and transcriptomes (Ruwe et al. 2013). 

For instance, high-throughput RNA sequencing (RNA-seq) of isolated organelles helped uncover 

pervasive transcription in the human mitochondrial genome and barley plastid genome (Mercer et 

al. 2011; Zhelyazkova et al. 2012). Given the popularity of NGS, organelle transcription can now 

easily be explored using publicly available RNA-seq data from whole-cell experiments (Smith 

2013). Indeed, such an approach revealed full transcription of plastid DNAs (ptDNAs) from 

various land plants (Shi et al. 2016) and in the mitochondrial DNAs (mtDNAs) of Polytomella 

green algae (Tian and Smith 2016).  

Most of the researchers that generate whole-cell eukaryotic RNA-seq data are not 

necessarily interested in organelle transcription, and many treat the organelle-derived reads as 
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contamination, filtering them out before downstream analyses. Consequently, public databases, 

such the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA), 

are increasingly becoming an untapped source for organelle transcriptomic data from eukaryotic 

RNA-seq experiments, regardless of the NGS sequencing protocol that was used (Smith and Sanitá 

Lima 2017).  

RNA-seq data alone are rarely enough to uncover the full complexity of organelle gene 

expression, but they are a fast, efficient, and cost-effective first approach to studying transcription 

(Dietrich et al. 2015). Although pervasive transcription has been extensively demonstrated in 

nuclear and bacterial systems (Berretta and Morillon 2009; Wade and Grainger 2014), it is not yet 

known how common this process is among organelle genomes. Most of the reports of genome-

wide transcription in organelles come solely from model species (Hotto et al. 2012; Ro et al. 2013; 

Ross et al. 2016), suggesting that this strategy is the norm, rather than the exception, in 

mitochondria and plastids, and perhaps inherited from their bacterial progenitors (Shi et al. 2016). 

So, is pervasive transcription a common theme among mtDNAs and ptDNAs across the eukaryotic 

domain? And do compact versus bloated organelle genomes differ in their transcriptional patterns?  

Here, by taking advantage of publicly available eukaryotic RNA-seq data, we investigate 

the transcriptional architecture of diverse plastid-bearing species, and show that pervasive 

transcription is a widespread phenomenon across the eukaryotic domain, including in very large 

organelle genomes with high non-coding contents. We speculate about the potential function roles 

(if any) of organelle non-coding RNAs (ncRNAs), particularly with respect to land plants and 

mixotrophs. If anything, these data highlight the utility of freely accessible RNA-seq data for 

organelle gene expression studies.        
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Material and Methods 

Using the NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/taxonomy), we 

identified 59 plastid-bearing species for which complete mitochondrial, plastid, and/or 

nucleomoprh genome sequences (>100 kb) and ample RNA-seq datasets were available. We 

limited our search to species with organelle genomes that were 100 kb or greater. Previously, we 

explored the prevalence of pervasive transcription in small and compact organelle genomes (105 

kb) (Sanitá Lima and Smith 2017, submitted), and here we wanted to see if the same trends held 

for larger organelle DNAs with long intergenic regions. 

The 59 species we identified include land plants and other members of the Archaeplastida 

as well as various species with “complex” plastids, such as cryptophytes and stramenopiles 

(supplementary Table S1, Supplementary Material online). The organelle genomic architectures 

of these species span the gamut of size (~104-980 kb), coding content (~0.6-82%), structure 

(circular versus linear), and chromosome number (intact versus fragmented). The RNA-Seq data 

were downloaded from the NCBI SRA (Kodama et al. 2011), and the genome sequences from 

GenBank. See supplementary Table S1 (Supplementary Material online) for detailed information 

on the RNA-seq and organelle genome data we collected, including accession numbers, read 

counts, sequencing technologies, organelle genome features (e.g., GC content, genome topology, 

and percent protein-coding), and the strains used for genome and transcriptome sequencing.  

We ensured that the RNA-seq and corresponding organelle genome data came from the 

same species, but sometimes they came from different strains of the same species (supplementary 

Table S1, Supplementary Material online). Also, the RNA-seq experiments we sourced were often 

generated using very different protocols and experimental conditions (supplementary Table S1, 
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Supplementary Material online). Nevertheless, these caveats did not hinder the mapping analyses 

(see below). 

Mapping analyses were performed using Geneious v9.1.6 (Biomatters Ltd., Auckland, NZ) 

(Kearse et al. 2012). Briefly, raw whole-cell RNA-seq reads were mapped to the corresponding 

organelle genomes with Bowtie 2 (Langmead and Salzberg 2012) using the default settings, the 

highest sensitivity option, and a min/max insert size of 50 nt/750 nt. We allowed each read to be 

mapped up to two locations to account for repeated regions, which are common in organelle 

genomes (Smith and Keeling 2015). The mapping histograms were extracted from Geneious.  

 

Results 

Pervasive transcription is widespread across organelle and nucleomorph genomes 

 For each of the organelle genomes studied here, RNA-seq reads covered 85% or more of 

the reference sequence (RefSeq), regardless of the genome size, non-coding content, or taxonomic 

grouping (Figure 1, and supplementary Table S1 and Figure S1, Supplementary Material online). 

In 24 cases, >99% of the organelle DNA sequence was present at the RNA level. In other words, 

all of the genomes exhibited pervasive, genome-wide transcription. The mean RNA-seq read 

coverage was consistently high across the different genomes, varying from ~30 to >2,300,000 

reads/nt.  

Together, these data indicate that non-coding regions from disparate organelle genomes 

are broadly transcribed, which can be clearly deduced from the RNA-seq mapping histograms 

(Supplementary Figure S1, Supplementary Material online). This was true for relatively compact 

genomes, such as the ptDNA of the stramenopile alga Nannochloropsis oceanica (82% coding; 

RefSeq coverage 94%) as well as for the highly bloated organelle genomes (Figure 1 and 
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supplementary Table S1 and Figure S1, Supplementary Material online). For instance, RNA-seq 

coverage exceeded 90% for the very large mitochondrial genomes of the land plants Salvia 

miltiorrhiza (~499 kb, ~9.5% coding), Capsicum annum (~507kb, ~12% coding), Rhazya stricta 

(~548 kb, ~8% coding), Asclepias syriaca (~682 kb, ~5% coding), Phoenix dactylifera (~715 kb, 

~5% coding), and Cucurbita pepo (~982 kb, ~15% coding) (Figure 2). This implies that hundreds 

of thousands of nucleotides of ncRNAs are being generated in these mitochondria, and within 

distinct groups of angiosperm (e.g., asterids, commelinids, and rosids).  

In fact, pervasive transcription of mitochondrial and plastid genomes appears to be the 

norm rather than the exception across plastid-bearing species as a whole. We found that it was 

common throughout the Archaeplastida, including in land plants, green algae, red algae, and 

glaucophytes, as well as in species with eukaryote-eukaryote derived plastids. Complete or nearly 

complete transcription is also found in organisms coming from very different habitats and 

ecosystems, such as deserts (e.g., Welwitschia mirabilis), irrigated cultures (e.g., Zea mays and 

Glycine max), freshwater (e.g., Tetradesmus obliquus) and seawater (e.g., Pyropia spp.). 

Among the most impressive examples of pervasive organelle transcription comes from the 

mtDNA of the dinoflagellate alga Symbiodinium minutum, a coral symbiont (Coffroth and Santos 

2005). This ~326 kb genome is made up of more than 99% non-coding DNA, all of which appears 

to be transcriptionally active (Figure 1 and supplementary Table S1 and Figure S1, Supplementary 

Material online). This result is consistent with a previous report of full mitochondrial transcription 

of the S. minutum mitochondrial genome using a different dataset (Shoguchi et al. 2015). We also 

observed full transcription in the nucleomorph genomes of Cryptomonas paramecium and 

Hemiselmis andersenii (Figure 3).  
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Discussion 

Our RNA mapping analyses provide various insights into organelle transcription and how 

it can be investigated using publically available RNA-seq data. First, the size of the RNA-seq 

datasets we employed did not always positively correlate with the overall organelle genome read 

coverage (supplementary Table S1, Supplementary Material online). This was to be expected 

given that the RNA-seq data we used came from different experiments and laboratory groups and 

were produced under varying conditions and sequencing protocols. Poly-A selection, for example, 

can lead to an enrichment in highly AT-rich organelle transcripts, and in some lineages, including 

land plants, organelle polyadenylation is a target for transcript degradation (Small et al. 2013). But 

we quickly overcame any issues associated with biased or underrepresentation organelle reads by 

combining multiple RNA-seq datasets from different experiments (supplementary Table S1, 

Supplementary Material Online).  

We also found differences in the RNA-seq coverage statistics for plastid and mitochondrial 

genomes. For the species which we had complete sequence data for both the mitochondrial and 

plastid genomes, the latter tended to have higher overall and mean coverage rates than the former. 

This could be connected to transcript abundance or genome copy number of plastids versus 

mitochondria, or perhaps the half-life of mitochondrial transcripts is shorter than that of plastid 

RNAs, or merely that mitochondria are responding to the experimental treatments differently than 

plastids.  

In some instances, organelle genome intergenic regions were not completely represented 

in the RNA-seq data (i.e., RefSeq coverage <100%). This is possibly a consequence of post-

transcriptional processing resulting in the cleavage of those regions, thus, preventing them from 

being captured in the transcriptomic sequencing experiment. But even when considering these few 
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missing regions, there is no denying that organelle genomes typically go full transcription no 

matter their structure, size, or content, or taxonomic grouping. 

Many of the genomes we analyzed undergo minor to moderate amounts of substitutional 

RNA editing (Shoguchi et al. 2015; Shi et al. 2016). We did not set out to specifically study post-

transcriptional editing, but we were able to easily identify edited sites from our mapping analyses, 

reinforcing the utility of freely available RNA-seq for quantifying and categorizing RNA editing 

in organelle systems (Smith 2013; Moreira et. al. 2016; Shi et al. 2016). Micro-RNA (miRNA) 

analyses were also beyond the scope of our work, but nevertheless we covered 4.5% of the 

Citrullus lanatus (watermelon) mitochondrial genome using only a few micro-RNA NGS datasets 

(data not shown). Telomeric RNA can be studied using RNA-seq: we found widespread telomeric 

transcription of the nucleomorph genomes from C. paramecium and H. andersenii, which is in line 

with previous work on the mitochondrial telomeres of Polytomella spp. (Tian and Smith 2016) and 

apicomplexan parasites (Raabe et al. 2010). The significance of organelle telomeric transcription 

is not unknown, but in the nuclei of humans, mice, yeast, and zebrafish, telomeres can be 

transcribed into regulatory long ncRNAs called TERRA (telomeric repeat-containing RNA) 

(Maicher et al. 2012; Arora et al. 2012; Cusanelli and Chartrand 2015). 

The utility of RNA-seq for scrutinizing organelle gene expression has its limitations and 

drawbacks. For example, nuclear mitochondrial-like and nuclear plastid-like DNA (NUMTs and 

NUPTs)—and even mitochondrial plastid-like DNA (MTPTs)—could be mistaken as bona fide 

organelle genome sequences in RNA-seq mapping experiments, and this is of particular concern 

for species with multiple mitochondria and/or plastids per cell (Smith 2011; Smith et al. 2011). 

Another downside to the approach used here is contamination. Genomic DNA (local or foreign) 

can persist in RNA-seq libraries even after treatments to eliminate it (Haas et al. 2012), but this is 
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an issue affecting all types of RNA-seq analyses and not just those focusing on organelle 

transcription. Even RNA-seq data derived from isolated organelles can have contamination: we 

were able to recover ~97% of the E. gracilis plastid genome with RNA-seq datasets produced from 

isolated mitochondria (supplementary Table S1 and Figure S1, Supplementary Material online). 

Clearly, plastids and plastid RNA passed through the isolation protocol.   

While accepting the shortcomings of RNA-seq, the mapping data presented here do support 

the idea that organelle genomes are pervasively transcribed in wide array of species. Again, this is 

not the first report of genome-wide organelle transcription. More than 25 years ago, Finnegan and 

Brown (1990) characterized the transcription of noncoding DNA in maize mitochondria. More 

recently, organelle ncRNAs have been described from animals and plants, some of which are 

candidates for gene regulation (Hotto et al. 2012; Ro et al. 2013; Ross et al. 2016). And every 

month brings more and more examples of complete organelle genome transcription from disparate 

groups throughout the eukaryotic tree of life, but the functional relevance of this is poorly 

understood (Vendramin et al. 2017). Similar trends are emerging from studies of nuclear genomes, 

where accounts of pervasive transcription are widespread, so much so that the expressions 

“noncoding RNA revolution” and “eukaryotic genome as an RNA machine” are now 

commonplace (Amaral et al. 2008; Cech and Steitz 2014). However, there are ongoing and heated 

debates about whether noncoding RNAs are functional (Struhl 2007; Ponjavic et al. 2007; Doolittle 

2013).  No matter where you stand on the debate, there is no denying that at least some noncoding 

RNAs are functional and participate in major biological process (Louro et al. 2009; Cabili et al. 

2011; Esteller 2011), from synaptic plasticity (Smalheiser 2014) to cancer development (Fang and 

Fullwood 2016).     
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Given the prevalence of pervasive transcription, many are questioning/exploring its 

evolutionary origins (Ulitsky 2016). Pervasive genome-wide transcription is standard fare for 

bacteria, including alphaproteobacteria and cyanobacteria (Landt et al. 2008; Georg et al. 2009; 

Schlüter et al. 2010; Mitschke et al. 2011a; Mitschke et al. 2011b; Voigt et al. 2014). Therefore, 

its widespread occurrence in organelles is arguably an ancestral trait (Shi et al. 2016). But the 

prevalence of full genome transcription in organelles is made more impressive by the fact that it 

can occur in systems with massive non-coding DNA contents (>90%), much larger than those of 

most bacteria. Could some of this non-coding organelle RNA have a regulatory role? And, if so, 

do large and bloated organelle genomes have more regulatory RNAs than their smaller, more 

compact counterparts?      

Recent data have supported the hypothesis that ncRNAs (both long and short) carry out 

crucial functions within mitochondria and plastids (Vendramin et al. 2017). For example, 

mitochondria can produce miRNAs (Smalheiser et al. 2011) and act as a reservoir for nuclear-

encoded ones (Bandiera et al. 2011), which can respond to environmental cues and regulate both 

cytosolic and organelle transcription (Duarte et al. 2014). Likewise, nuclear long noncoding RNAs 

appear to mediate crosstalk between the nucleus and mitochondrion (Vendramin et al. 2017). The 

nature and function of plastid and nuclear-encoded plastid-targeted noncoding RNAs are poorly 

understood (Zhelyazkova et al. 2012), but likely perform similar roles to those in the 

mitochondrion. That ncRNAs can move between organelles raises interesting questions about the 

transport machinery mediating this movement, most of which remain a mystery (Dietrich et al. 

2015; Vendramin et al. 2017). The transport of RNA is even more complicated in the case of 

complex plastids (Keeling 2013), cyanelles (Steiner and Löffelhardt 2002), and nucleomorphs 

(Moore and Archibald 2009).  
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Pervasive organelle transcription might also be involved in plastid development (and its 

putative link to land plant terrestrialization) as well as in trophic mode determination in 

mixotrophs. Plastid-specific traits, such as high-light tolerance and ptDNA architectural features, 

might have had a fundamental role in the evolutionary transition from water to land (de Vries et 

al. 2016). If true, variation in the number and types of ncRNA could have helped shape and regulate 

the characteristics that allowed for the terrestrialization of land plants. Land plants, for example, 

have an array of plastids (e.g., proplastids, chloroplasts, chromoplasts, and amiloplasts) (Jarvis and 

López-Juez 2013), which could likely be generated and regulated in part by ncRNAs. Similar 

arguments can be made for the evolution of mixotrophic algae, which can switch between 

heterotrophy and photoautotrophy (Jassey et al. 2015). Although speculative, the mechanisms for 

trophic mode determination could be partly controlled by organelle (or nuclear) ncRNAs generated 

via pervasive transcription. It would be interesting to explore the hypothesis that organelle genome 

size variation (together with organelle number) played a role in the evolution of mixotrophy. After 

all, non-coding sequences can be used as the raw material for generating new regulatory pathways 

(Libri 2015). 

Although not the first account of pervasive organelle transcription, this is the first report to 

show such widespread occurrence of this phenomenon. Most of the data used in our work came 

from whole-cell RNA-seq experiments in which the organelle reads were ignored. That we could 

use these data to assemble complete or near-complete organelle transcriptomes highlights the value 

of publicly available RNA-seq experiments (and the SRA) for organelle research. This work also 

emphasizes the ease at which one can assemble a complete organelle genome from RNA-seq data 

alone. A quick scan through the SRA reveals many species for which there are whole-cell RNA-

seq data but no or minimal organelle DNA sequence data (Smith and Sanitá Lima 2017). Some of 
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these species are poorly studied marine protists of great ecological importance, which had their 

transcriptomes sequenced as part of the Marine Microbial Eukaryote Transcriptome Sequencing 

Project (MMETSP) (Keeling et al. 2014). As a proof of concept, fourteen land plant plastid 

genomes were recently de novo assembled from transcriptomic data coming from SRA (Shi et al 

2016). Clearly, publicly available whole-cell RNA-seq data are a goldmine for organelle genomics 

and transcriptomics (Smith 2013). We just need to start digging.  
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Figure legends  

Fig. 1. Occurrence of pervasive transcription in mitochondrial, plastid and nucleomorph 

genomes across plastid-bearing species.  

Unscaled phylogenetic relationships were extracted from: (Stevens 2001; Wojciechowski 2006; 

Burki 2014; Plackett et al. 2015; Renner and Schaefer 2016).  mt, mitochondrion; pt, plastid; cy, 

cyanelle; nm, nucleomorph; RefSeq %, percentage of the reference organelle genome covered by 

one or more transcripts; Coding %, percentage of the amount of coding sequences (tRNA-, rRNA- 

and protein coding genes) in the organelle genome. The coding % was manually determined by 

extracting tRNA-, rRNA- and coding sequences (CDS) annotations and then subtracting spurious 

annotations using Geneious v9.1.6 (Kearse et al. 2012).  

Fig. 2. Full transcription of bloated mitochondrial genomes in land plants. 

Mapping histograms show coverage depth (transcripts mapped per nucleotide) on a log scale. 

Organelle genome annotations are from genome assemblies deposited in GenBank (accession 

numbers provided in supplementary Table S1, Supplementary Material online). Mapping contigs 

are not to scale and direction of transcription is given by the arrows of the annotated genes. 

Mapping histograms were extracted from Geneious v9.1.6 (Kearse et al. 2012). 

Fig. 3. Full transcription of nucleomorph genomes in cryptophytes.  

Cryptomonas paramecium and Hemiselmis andersenii had full transcription in every chromosome 

of their nucleomorph genomes, including telomeric regions. Mapping histograms follow the same 

structure as in Figure 2; mapping contigs are not to scale. 
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